A DEEP GENERATIVE APPROACH TO CONDITIONAL LEARNING

Watch Video

09 07, 2022

 

Speaker: Prof. Jian HuangThe Hong Kong Polytechnic University

Title: A DEEP GENERATIVE APPROACH TO CONDITIONAL LEARNING

Time: September 13,2022

Venue: Tencent meeting:  932-316-782

Abstract: Conditional distribution is a fundamental quantity in statistics and machine learning that provides a full description of the relationship between a response and a predictor. There is a vast literature on conditional density estimation. A common feature of the existing methods is that they seek to estimate the functional form of the conditional density. We propose a deep generative approach to learning a conditional distribution by estimating a conditional generator, so that a random sample from the target conditional distribution can be obtained by transforming a sample from a reference distribution. The conditional generator is estimated nonparametrically with neural networks by matching appropriate joint distributions using a discrepancy measure. There are several advantages of the proposed generative approach over the classical methods for conditional density estimation, including: (a) there is no restriction on the dimensionality of the response or predictor, (b) it can handle both continuous and discrete type predictors and responses, and (c) it is easy to obtain estimates of the summary measures of the underlying conditional distribution by Monte Carlo. We conduct numerical experiments to validate the proposed method and using several benchmark datasets, including the California housing, the MNIST, and the CelebA datasets, to illustrate its applications in conditional sample generation, uncertainty quantification of prediction, visualization of multivariate data, image generation and image reconstruction.

Contacts:

E-mail:

Copyright@2008,All Rights Reserved, Academy of Mathematics and Systems Science,CAS
Tel:86-10-82541777 Fax: 86-10-82541972 E-mail: contact@amss.ac.cn
京ICP备05002806-1号 京公网安备110402500020号