On the regularization and optimization in quantum detector tomography (Yuanlong Wang)

Watch Video

09 20, 2023

  Quantum detector tomography (QDT) is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, we utilize regularization to improve the QDT accuracy whenever the probe states are informationally complete or informationally incomplete. In the informationally complete scenario, without regularization, we optimize the resource (probe state) distribution by converting it to a semidefinite programming problem. Then in both the informationally complete and informationally incomplete scenarios, we discuss different regularization forms and prove the mean squared error scales as O(1/N) or tends to a constant with N state copies under the static assumption. We also characterize the ideal best regularization for the identifiable parameters, accounting for both the informationally complete and informationally incomplete scenarios. Numerical examples demonstrate the effectiveness of different regularization forms and a quantum optical experiment test shows that a suitable regularization form can reach a reduced mean squared error.

  

  Publication:

  Automatica, Volume 155, September 2023, 111124

  http://dx.doi.org/10.1016/j.automatica.2023.111124

   

  Author:

  Shuixin Xiao

  University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

  School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia

  

  Yuanlong Wang

  Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

  Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111, Australia

  Email: wangyuanlong@amss.ac.cn

  

  Jun Zhang

  University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

  

  Daoyi Dong

  School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia

  

  Shota Yokoyama

  School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia

  Centre for Quantum Computation and Communication Technology, Australian Research Council, Canberra, ACT 2600, Australia

  

  Ian R. Petersen

  School of Engineering, Australian National University, Canberra, ACT 2601, Australia

  

  Hidehiro Yonezawa

  School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia

  Centre for Quantum Computation and Communication Technology, Australian Research Council, Canberra, ACT 2600, Australia

Contacts:

E-mail:

Copyright@2008,All Rights Reserved, Academy of Mathematics and Systems Science,CAS
Tel:86-10-82541777 Fax: 86-10-82541972 E-mail: contact@amss.ac.cn
京ICP备05002806-1号 京公网安备110402500020号